Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux.
نویسندگان
چکیده
The yeast (Saccharomyces cerevisiae) multidrug transporter Pdr5p effluxes a broad range of substrates that are variable in structure and mode of action. Previous work suggested that molecular size and ionization could be important parameters. In this study, we compared the relative sensitivity of isogenic PDR5 and pdr5 strains toward putative substrates that are similar in chemical structure. Three series were used: imidazole-containing compounds, trialkyltin chlorides, and tetraalkyltin compounds. We demonstrate that the Pdr5p transporter is capable of mediating transport of substrates that neither ionize nor have electron pair donors and that are much simpler in structure than those transported by the human MDR1-encoded P-glycoprotein. Furthermore, the size of the substrate is critical and independent of any requirement for hydrophobicity. Substrates have surface volumes greater than 90 A(3) with an optimum response at approximately 200-225 A(3) as determined by molecular modeling. Assays measuring the efflux from cells of [(3)H]chloramphenicol and [(3)H]tritylimidazole were used. A concentration-dependent inhibition of chloramphenicol transport was observed with imidazole derivatives but not with either the organotin compounds or the antitumor agent doxorubicin. In contrast, several of the organotin compounds were potent inhibitors of tritylimidazole efflux, but the Pdr5p substrate tetrapropyltin was ineffective in both assays. This argues for the existence of at least three substrate-binding sites on Pdr5p that differ in behavior from those of the mammalian P-glycoprotein. Evidence also indicates that some substrates are capable of interacting at more than one site. The surprising observation that Pdr5p mediates resistance to tetraalkyltins suggests that one of the sites might use only hydrophobic interactions to bind substrates.
منابع مشابه
A Mutation in Intracellular Loop 4 Affects the Drug-Efflux Activity of the Yeast Multidrug Resistance ABC Transporter Pdr5p
Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constr...
متن کاملThe yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae.
Mutants of Saccharomyces cerevisiae bearing lesions in the ergosterol biosynthetic pathway exhibit a pleiotropic drug-sensitive phenotype. This has been reported to result from an increased permeability of the membranes of the mutant strains to different drugs. As disruption of the yeast multidrug resistance protein, Pdr5p, results in a similar pleiotropic drug-sensitive phenotype, the possibil...
متن کاملStructure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.
The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transpor...
متن کاملAnticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p.
Pdr5p is the yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Its high overproduction in Pdr1p transcription factor mutants allows us to study the molecular mechanism of multidrug transport and substrate specificity. We have developed new in vivo and in vitro assays of Pdr5p-mediated drug transport. We show that in spite of little...
متن کاملEvaluation of some medicinal plants effect on Rhodamine 123 accumulation and efflux in Caco-2 cell line by flowcytometry
Background and objectives: In review of traditional Persian medicine (TPM) literature concerning multi drug therapy, a group of medicinal plants that are called "convoy drugs", agents which penetrate fast into whole or specific part of the body and accelerate delivery of drugs into specific target has been mentioned. In this study, the inhibitory effect of the aqueous extracts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 8 شماره
صفحات -
تاریخ انتشار 2003